GPGPU Computing Applications in Graphics and Game Development CPE613 Topical Seminar 7/1/14 By Falco Girgis

Outline

- Motivation
- Intro to Graphics Pipeline
- Intro to Shaders
- OpenCL/OpenGL Interop Model
- GPGPU with Game Development
- Collision Detection
- Physics Engines
- Artificial Intelligence
- Shortcomings
- Future of Interop

2

OpenCL[®]

Motivation

- Highly parallelized GPU architecturesignificantly more FLOPS
- Ubiquity of programmable GPUs
 - desktops, cell phones, game consoles
- Memory Wall Processor vs RAM speeds
 - GPUs have greater memory bandwidth
- Increasing GPU speeds cubed Moore's Law
 - due to data-parallel streaming

GPU Graphics Pipeline

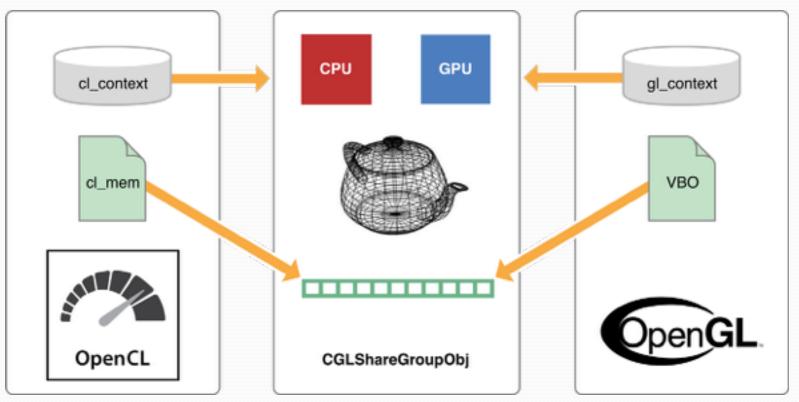
Introduction to Shaders

- Programmable portions of graphics pipeline
- Analogous to GPGPU Kernels
- Data-level Parallel
 - hundreds of threads operating in parallel
- Vertex Shaders
 - thread scheduled for every vertex submission
- Fragment Shaders
 - thread scheduled for every filled pixel/texel

Example GLSL Vertex Shader

varying vec4 diffuseColor; varying vec3 fragNormal; varying vec3 lightVector;

```
uniform vec3 eyeSpaceLightVector;
```


```
//Executed for every vertex being rendered
//It's like an OpenCL/CUDA Kernel
void main(void) {
    vec3 eyeSpaceVertex = vec3(gl_ModelViewMatrix * gl_Vertex);
    lightVector= vec3(normalize (eyeSpaceLightVector - eyeSpaceVertex));
    fragNormal = normalize(gl_NormalMatrix * gl_Normal);
```

```
diffuseColor = gl_Color;
gl_Position = gl_ModelViewProjectionMatrix * glVertex;
```

}

OpenCL and OpenGL Interop

- OpenGL Vertex Buffer Object (VBO)
 - device buffer storing geometry data used to render a model
- OpenCL cl_mem
 - generic device buffer handle

Sharing Data between CL and GL

Basic Approach

- 1. Initialize CL context from a GL ShareGroupObj
- 2. Create objects in GL as usual
- 3. Create references to GL objects in CL
- 4. Synchronize and Swap Ownership between two
- 5. Release CL reference then destroy GL object
- Examples
 - 1. Map GL texture or render-buffer to CL image
 - Perform image processing in OpenCL, render with OpenGL
 - clCreateFromGLTexture(context, flags, target, miplevel, texture, error)
 - 2. Map GL VBO to cl_mem buffer
 - CL updates geometry, colors, or normals. GL renders.
 - gcl_gl_create_ptr_from_buffer(id)

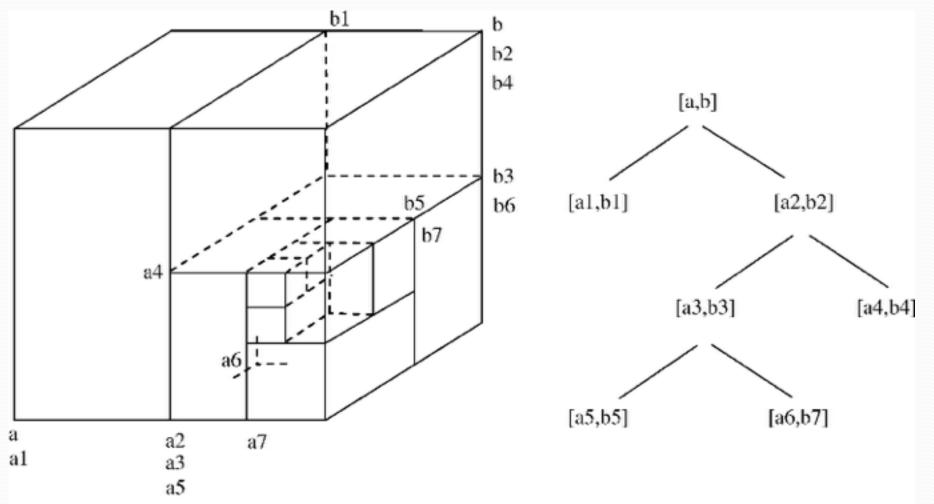
General GL/CL Interop Considerations

- Shared buffer approach avoids copying between GL and CL contexts
- Synchronization between GL, CL, and Host
 - CL/Host CL command queue
 - GL/Host glFlush()
- Keep as much logic as possible on the GPU
 - pipeline data-parallel tasks on GPU
 - minimizes transfer overhead requirements
 - maximizes GPU utilization

Game Development Applications

- Texture Processing
 - advanced pre or post processing applied to GL surfaces outside the graphics pipeline
- Collision Detection
 - Broad-phase
 - Contact creation
- Particles and Physics Engines
 - Simulating Rigid Bodies and interactions
- Artificial Intelligence

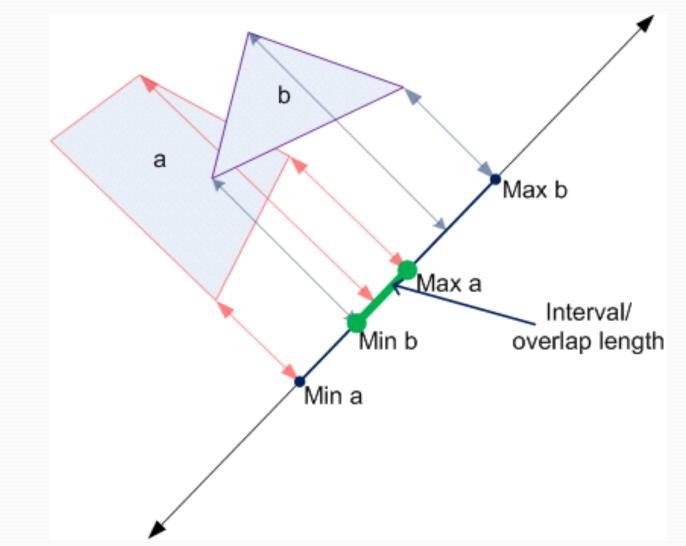
Texture Postprocessing


• Radial blur applied to whole frame buffer

Broad Phase Collision Detection

- Spatial Partitioning
 - subset of n-body problem
 - partition scene into smaller segments
 - create graph grouping nearby objects
 - reduces time-complexity of actual collision checks
 - not checking everything against everything
- Objects can be processed independently
 - highly data-level parallel
 - kernel thread per object

Binary Space Partitioning



Contact Generation

"Fine" Collision Detection

- Very computationally intensive
 - complex geometry, points of contact, depth, normals, lost of linear algebra
- Each potentially colliding pair is independent
 - CL kernel checks collision against two bodies
 - one thread per collision check
 - also highly parallelizable

Separating Axis Convex Polygon Collision

258 Separating Axis Contacts

Physics Simulation Pipeline

1. Force Application

- accumulate outside force influences
- 2. Integration
 - update acceleration, velocity, and position
- 3. Collision Detection
 - spatial partitioning
 - contact generation
- 4. Contact Resolution
 - penetration resolution
 - velocity resolution

Physics Pipeline Considerations

- Applies same operations to large groups of independent objects
 - highly data-level parallel
- Broken into discrete pipeline stages
 - each stage can be handled by a set of kernels
 - entire pipeline can execute on the GPU without requiring additional data
 - significantly reduces transfer overhead

NVidia PhysX Engine

• Uses CUDA and DirectX

Artificial Intelligence

- Traditionally CPU-bound problems
- Machine-Based Learning
 - training phases require massive amounts of data processing
- Path-Finding
 - Many algorithms must exhaustively search potential paths
 - GPU can process many paths in parallel
- Genetic Algorithms
 - determine fitness value per individual
 - population is a shared data structure
 - kernel calculates fitness of each individual in parallel

A* Pathfinding Algorithm

• least-cost path requires many graph traversals

• can be done in parallel on the GPU

	e				1 m
	A REAL PROPERTY AND A REAL		lanne nann Lanne		
an a sanara References References			acaa kasa santiy mangunat		n na se
ได้และการเสร็จแล 19 มหากม 18 มี สถาม	2 2 2 2 2 2 62280022800 2200228 2 200	ajaan Taan Shuuuni Ing ganini		200000 anos	H HARREN Darzingeneren Historika
anna g gg	n Komen a pan		pana kaan	Juneounag	Research B

Shortcomings

- CPU requiring intermediate data from GPU pipeline
 - requires a transfer back to the host
 - may require a second transfer back to GPU
- Branch-intensive game logic
 - significantly reduces GPU performance
 - causes warp divergence
- Inefficient for small sets of data
 - transfer overhead is greater than computation time
- OpenGL and OpenCL interop is still relatively new
 - not every driver implementation supports interop

GPGPU with Game Development in the Future

- CPU and GPU memory unification trend
 - will significantly reduce transaction overhead
 - allows less rigid GPU pipelines, since CPU can access intermediate data more quickly
- GLSL "Compute" Shaders
 - analogous to OpenCL/CUDA kernels
 - general-purpose processing in graphics APIs
- GPGPU Advances
 - dynamic parallelism
 - shared virtual memory
 - pipes

Resources

- 1. <u>https://developer.apple.com/library/mac/documentation/Performance/</u> <u>Conceptual/OpenCL_MacProgGuide/shareGroups/shareGroups.html</u>
- 2. <u>https://developer.apple.com/library/mac/documentation/Performance/</u> <u>Conceptual/OpenCL_MacProgGuide/SynchronizingCLandGL/</u> <u>SynchronizingCLandGL.html#//apple_ref/doc/uid/TP40008312-CH18-SW1</u>
- 3. <u>https://software.intel.com/en-us/articles/opencl-and-opengl-interoperability-tutorial</u>
- 4. <u>http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-gl-interop.pdf</u>
- 5. <u>https://developer.nvidia.com/gpu-ai-path-finding</u>
- 6. <u>http://www.geforce.com/hardware/technology/physx</u>
- 7. <u>http://what-when-how.com/artificial-intelligence/ia-algorithm-acceleration-using-gpus-artificial-intelligence/</u>
- 8. <u>http://www.opengl.org/wiki/Compute_Shader</u>
- 9. <u>https://www.khronos.org/news/press/khronos-releases-opencl-2.0</u>