
GPGPU Computing Applications
in Graphics and Game

Development
CPE613 Topical Seminar!

7/1/14!
By Falco Girgis

Outline
● Motivation!
● Intro to Graphics Pipeline!
● Intro to Shaders!
● OpenCL/OpenGL Interop Model!
● GPGPU with Game Development!
● Collision Detection!
● Physics Engines!
● Artificial Intelligence!
● Shortcomings!
● Future of Interop

2

Motivation
● Highly parallelized GPU architecture!
● significantly more FLOPS!

● Ubiquity of programmable GPUs!
● desktops, cell phones, game consoles!

● Memory Wall - Processor vs RAM speeds!
● GPUs have greater memory bandwidth!

● Increasing GPU speeds - cubed Moore’s Law!
● due to data-parallel streaming

GPU Graphics Pipeline

Introduction to Shaders
● Programmable portions of graphics pipeline!
● Analogous to GPGPU Kernels!
● Data-level Parallel!
● hundreds of threads operating in parallel!

● Vertex Shaders!
● thread scheduled for every vertex submission!

● Fragment Shaders!
● thread scheduled for every filled pixel/texel

Example GLSL Vertex Shader
!!!
varying vec4 diffuseColor;
varying vec3 fragNormal;
varying vec3 lightVector; !
uniform vec3 eyeSpaceLightVector; !!
//Executed for every vertex being rendered
//It’s like an OpenCL/CUDA Kernel
void main(void) {
 vec3 eyeSpaceVertex = vec3(gl_ModelViewMatrix * gl_Vertex);
 lightVector= vec3(normalize (eyeSpaceLightVector - eyeSpaceVertex));
 fragNormal = normalize(gl_NormalMatrix * gl_Normal);

 diffuseColor = gl_Color;
 gl_Position = gl_ModelViewProjectionMatrix * glVertex;
} !!

6

OpenCL and OpenGL Interop
● OpenGL - Vertex Buffer Object (VBO)!
● device buffer storing geometry data used to render a model!

● OpenCL - cl_mem !
● generic device buffer handle

Sharing Data between CL and GL
● Basic Approach!

1. Initialize CL context from a GL ShareGroupObj!
2. Create objects in GL as usual!
3. Create references to GL objects in CL!
4. Synchronize and Swap Ownership between two!
5. Release CL reference then destroy GL object!

!
● Examples!

1. Map GL texture or render-buffer to CL image!
• Perform image processing in OpenCL, render with OpenGL!
• clCreateFromGLTexture(context, flags, target, miplevel, texture, error)!

2. Map GL VBO to cl_mem buffer!
• CL updates geometry, colors, or normals. GL renders.!
• gcl_gl_create_ptr_from_buffer(id)

General GL/CL Interop
Considerations
● Shared buffer approach avoids copying between GL and

CL contexts!
● Synchronization between GL, CL, and Host!
● CL/Host - CL command queue!
● GL/Host - glFlush()!

● Keep as much logic as possible on the GPU!
● pipeline data-parallel tasks on GPU!
● minimizes transfer overhead requirements!
● maximizes GPU utilization

Game Development Applications
● Texture Processing!
● advanced pre or post processing applied to GL

surfaces outside the graphics pipeline!
● Collision Detection!
● Broad-phase!
● Contact creation!

● Particles and Physics Engines!
● Simulating Rigid Bodies and interactions!

● Artificial Intelligence

Texture Postprocessing
● Radial blur applied to whole frame buffer

Broad Phase Collision Detection
● Spatial Partitioning!
● subset of n-body problem!
● partition scene into smaller segments!
● create graph grouping nearby objects!
● reduces time-complexity of actual collision checks!
● not checking everything against everything!

● Objects can be processed independently!
● highly data-level parallel!
● kernel thread per object

Binary Space Partitioning

13

Contact Generation
● “Fine” Collision Detection!
● Very computationally intensive!
● complex geometry, points of contact, depth,

normals, lost of linear algebra!
● Each potentially colliding pair is independent!
● CL kernel checks collision against two bodies!
● one thread per collision check!
● also highly parallelizable

Separating Axis Convex
Polygon Collision

15

258 Separating Axis Contacts

16

Physics Simulation Pipeline
1. Force Application!

• accumulate outside force influences !
2. Integration!

• update acceleration, velocity, and position!
3. Collision Detection!

• spatial partitioning!
• contact generation!

4. Contact Resolution!
• penetration resolution !
• velocity resolution

Physics Pipeline Considerations
● Applies same operations to large groups of

independent objects!
● highly data-level parallel!

● Broken into discrete pipeline stages!
● each stage can be handled by a set of kernels!
● entire pipeline can execute on the GPU without

requiring additional data!
● significantly reduces transfer overhead

NVidia PhysX Engine
● Uses CUDA and DirectX

Artificial Intelligence
● Traditionally CPU-bound problems!
● Machine-Based Learning!
● training phases require massive amounts of data processing!

● Path-Finding!
● Many algorithms must exhaustively search potential paths!
● GPU can process many paths in parallel!

● Genetic Algorithms!
● determine fitness value per individual!
● population is a shared data structure!
● kernel calculates fitness of each individual in parallel

A* Pathfinding Algorithm
● least-cost path requires many graph traversals!
● can be done in parallel on the GPU

21

Shortcomings
● CPU requiring intermediate data from GPU pipeline!
● requires a transfer back to the host!
● may require a second transfer back to GPU!

● Branch-intensive game logic!
● significantly reduces GPU performance!
● causes warp divergence !

● Inefficient for small sets of data!
● transfer overhead is greater than computation time!

● OpenGL and OpenCL interop is still relatively new!
● not every driver implementation supports interop

GPGPU with Game Development in
the Future
● CPU and GPU memory unification trend!
● will significantly reduce transaction overhead!
● allows less rigid GPU pipelines, since CPU can access

intermediate data more quickly!
● GLSL “Compute” Shaders!
● analogous to OpenCL/CUDA kernels!
● general-purpose processing in graphics APIs!

● GPGPU Advances!
● dynamic parallelism!
● shared virtual memory!
● pipes

Resources
1. https://developer.apple.com/library/mac/documentation/Performance/

Conceptual/OpenCL_MacProgGuide/shareGroups/shareGroups.html!
2. https://developer.apple.com/library/mac/documentation/Performance/

Conceptual/OpenCL_MacProgGuide/SynchronizingCLandGL/
SynchronizingCLandGL.html#//apple_ref/doc/uid/TP40008312-CH18-SW1!

3. https://software.intel.com/en-us/articles/opencl-and-opengl-interoperability-tutorial!
4. http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-gl-interop.pdf!
5. https://developer.nvidia.com/gpu-ai-path-finding!
6. http://www.geforce.com/hardware/technology/physx!
7. http://what-when-how.com/artificial-intelligence/ia-algorithm-acceleration-using-

gpus-artificial-intelligence/!
8. http://www.opengl.org/wiki/Compute_Shader!
9. https://www.khronos.org/news/press/khronos-releases-opencl-2.0

https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/shareGroups/shareGroups.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/SynchronizingCLandGL/SynchronizingCLandGL.html#//apple_ref/doc/uid/TP40008312-CH18-SW1
https://software.intel.com/en-us/articles/opencl-and-opengl-interoperability-tutorial
http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-gl-interop.pdf
https://developer.nvidia.com/gpu-ai-path-finding
http://www.geforce.com/hardware/technology/physx
http://what-when-how.com/artificial-intelligence/ia-algorithm-acceleration-using-gpus-artificial-intelligence/
http://www.opengl.org/wiki/Compute_Shader
https://www.khronos.org/news/press/khronos-releases-opencl-2.0

