GPGPU Computing Applications
in Graphics and Game

Development
CPE613 Topical Seminar

7/1/14
o Girgis

N
Outline “E/

o Motivation .

¢ Intro to Graphics Pipeline -
* Intro to Shaders ® pen & L®
* OpenCL/OpenGL Interop Model
» GPGPU with Game Development

e Collision Detection

» Physics Engines
» Artificial Intelligence G L
 Shortcomings ; pen e

 Future of Interop

Motivation

Highly parallelized GPU architecture
significantly more FLOPS
Ubiquity of programmable GPUs
desktops, cell phones, game consoles
Memory Wall - Processor vs RAM speeds
GPUs have greater memory bandwidth
Increasing GPU speeds - cubed Moore’s Law

due to data-parallel streaming

- = /

Introduction to Shaders

Programmable portions of graphics pipeline
Analogous to GPGPU Kernels
Data-level Parallel

hundreds of threads operating in parallel
Vertex Shaders

thread scheduled for every vertex submission
Fragment Shaders

thread scheduled for every filled pixel/ texel

Example GLSL Vertex Shader

varying vec4 diffuseColor;
varying vec3 fragNormal;
varying vec3 lightVector;

uniform vec3 eyeSpacelLightVector;

//Executed for every vertex being rendered
//It’'s like an OpenCL/CUDA Kernel
void main(void) {

vec3 eyeSpaceVertex = vec3(gl_ModelViewMatrix x gl_Vertex);
lightVector= vec3(normalize (eyeSpacelLightVector - eyeSpaceVertex));
fragNormal = normalize(gl_NormalMatrix * gl_Normal);

diffuseColor = gl_Color;
gl_Position = gl_ModelViewProjectionMatrix x glVertex;

* OpenGL - Vertex Buffer Object (VBO)
* device buffer storing geometry data used to render a model
* OpenCL - cl_mem
* generic device buffer handle

cl_context gl_context
cl_mem VBO
| |
.’“'% TITITITIT]
w
@L
OpenCL CGLShareGroupObj

— /

gharing Data between CL and GL

Basic Approach
1. Initialize CL context from a GL ShareGroupODbj;
2. Create objects in GL as usual
3. Create references to GL objects in CL
4. Synchronize and Swap Ownership between two
5. Release CL reference then destroy GL object

Examples
1. Map GL texture or render-buffer to CL image
e Perform image processing in OpenCL, render with OpenGL
e clCreateFromGLTexture(context, flags, target, miplevel, texture, error)
2. Map GL VBO to cl_mem buffer
e CL updates geometry, colors, or normals. GL renders.
e ocl_gl_create_ptr_from_buffer(id)

/

General GL/CL In\terop
Considerations

Shared buffer approach avoids copying between GL and
CL contexts

Synchronization between GL, CL, and Host
CL/Host - CL command queue
GL /Host - glFlush()

Keep as much logic as possible on the GPU
pipeline data-parallel tasks on GPU
minimizes transfer overhead requirements

maximizes GPU utilization

— /

Game Development Applications

Texture Processing

/

advanced pre or post processing applied to GL
surfaces outside the graphics pipeline

Collision Detection
Broad-phase
Contact creation
Particles and Physics Engines
Simulating Rigid Bodies and interactions

Artificial Intelligence

P

exture Postprocessing

» Radial blur applied to whole frame buffer

— /

Broad Phase Collision Detection

Spatial Partitioning

.

subset of n-body problem

partition scene into smaller segments

create graph grouping nearby objects

reduces time-complexity of actual collision checks

not checking everything against everything

Objects can be processed independently

highly data-level parallel

kernel thread per object

l"
o7 b3
’I' pe -
o* ‘/:r.,r-_ b7
- - -7
| 2
a4 i
-]
Jl"
’I
T
36".-— /
-
4 a2 a7
al a3
as

b2

b3
b6

[a.b]
[al.bl] [a2,b2)

[a3,b3] [a4,b4]

N

[a3,b35] [a6,b7]

e /
/

Contact Generation

“Fine” Collision Detection
Very computationally intensive

complex geometry, points of contact, depth,
normals, lost of linear algebra

Each potentially colliding pair is independent
CL kernel checks collision against two bodies
one thread per collision check
also highly parallelizable

Interval/
inb overlap length

i

258 Separating Axis Contacts

FPS 59.96
Yeris: 1057
!

13

> — /

Physics Simulation Pipeline

1. Force Application
e accumulate outside force influences
2. Integration
e update acceleration, velocity, and position
3. Collision Detection
e spatial partitioning
* contact generation
4. Contact Resolution
* penetration resolution
* velocity resolution

- R——

Physics Pipeline Considerations

Applies same operations to large groups of
independent objects

.

highly data-level parallel
Broken into discrete pipeline stages
each stage can be handled by a set of kernels

entire pipeline can execute on the GPU without
requiring additional data

significantly reduces transfer overhead

NVidia PhysX Engine

Uses CUDA and DirectX

Artificial Intelligence

Traditionally CPU-bound problems

—

Machine-Based Learning
training phases require massive amounts of data processing
Path-Finding
Many algorithms must exhaustively search potential paths
GPU can process many paths in parallel
Genetic Algorithms
determine fitness value per individual
population is a shared data structure
kernel calculates fitness of each individual in parallel

A* Pathfinding Algorithm

least-cost path requires many graph traversals

can be done in parallel on the GPU

ESLIMMI Vi)

Shortcomings

CPU requiring intermediate data from GPU pipeline
requires a transfer back to the host
may require a second transfer back to GPU
Branch-intensive game logic
significantly reduces GPU performance
causes warp divergence
Inefficient for small sets of data
transfer overhead is greater than computation time
OpenGL and OpenCL interop is still relatively new
not every driver implementation supports interop

- —

GPGPU with Game Development in
the Future

CPU and GPU memory unification trend
will significantly reduce transaction overhead

allows less rigid GPU pipelines, since CPU can access
intermediate data more quickly

GLSL “Compute” Shaders
analogous to OpenCL /CUDA kernels
general-purpose processing in graphics APIs
GPGPU Advances
dynamic parallelism
shared virtual memory

pipes

Resources

1. https:/ /developer.apple.com/library /mac/documentation / Performance /

Conceptual /OpenCL,_MacProgGuide/shareGroups/shareGroups.html

2. https:/ / developer.apple.com/library /mac/documentation /Performance /

Conceptual /OpenCL,_MacProgGuide/ SynchronizingCLandGL /

SynchronizingCLandGL.html# / /apple_ref/doc/uid / TP40008312-CH18-SW1
3. https:/ /software.intel.com /en-us/ articles / opencl-and-opengl-interoperability-tutorial
4. http:/ /sal0.idav.ucdavis.edu/docs/sal0-d
5. https:/ /developer.nvidia.com / gpu-ai-path-finding

6. http:/ /www.geforce.com /hardware / technology / physx

7. http:/ /what-when-how.com/ artificial-intelligence /ia-algorithm-acceleration-using-

gpus-artificial-intelligence /

8. http:/ /www.opengl.org/wiki/Compute Shader

9. https:/ /www.khronos.org /news / press / khronos-releases-opencl-2.0

https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/shareGroups/shareGroups.html
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/SynchronizingCLandGL/SynchronizingCLandGL.html#//apple_ref/doc/uid/TP40008312-CH18-SW1
https://software.intel.com/en-us/articles/opencl-and-opengl-interoperability-tutorial
http://sa10.idav.ucdavis.edu/docs/sa10-dg-opencl-gl-interop.pdf
https://developer.nvidia.com/gpu-ai-path-finding
http://www.geforce.com/hardware/technology/physx
http://what-when-how.com/artificial-intelligence/ia-algorithm-acceleration-using-gpus-artificial-intelligence/
http://www.opengl.org/wiki/Compute_Shader
https://www.khronos.org/news/press/khronos-releases-opencl-2.0

