NOTE: this is really messy code. I just wanted the answer, so I ignored proper design principles, duh! There are problems where I use python code, the rest is in C/C++.
Also, there is a lot of useless code as well. And unfinished stuff for problem 10 (sieve of ero).
EDIT: Removed the project name, so as to inhibit googling. Hopefully google refreshes their cache of this forum soon.
Click here to see the hidden message (It might contain spoilers)
Code: Select all
// By Sparda, public domain
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
//Nice little preprocessor directive ;)
#define STRINGIZE(x) #x
// Globals
#define MIL 4000000
#define EMPTY -1
#define MAX 2000
const int fibo[34] =
{
0,
1,
1,
2,
3,
5,
8,
13,
21,
34,
55,
89,
144,
233,
377,
610,
987,
1597,
2584,
4181,
6765,
10946,
17711,
28657,
46368,
75025,
121393,
196418,
317811,
514229,
832040,
1346269,
2178309,
3524578
};
// user defined types
typedef unsigned int u32;
// Some prototypes
void process(int ListA[], int ListB[]);
int sum(int x);
int fib(u32 n);
long fourmillion(void);
unsigned long long divisible(int x);
int sums_problem(void);
int main(void)
{
long long sum_of_primes = 0;
// This bunch is for the prime generation
int *ListA(NULL), *ListB(NULL);
ListA = new int [MAX];
ListB = new int [MAX]; // Could be set dynamically with a prompt
// by the user instead of initializing to MAX.
for(int i = 0; i < MAX ; ++i){
ListA[i] = i + 2; ListB[i] = EMPTY; // Set inital values
}
ListB[0] = ListA[0];
process(ListA, ListB);
for(int i = 0, j=1; i < MAX ; ++i, j++){
if(ListB[i] != EMPTY && ListB[i] < MAX) {
printf("#%d, %d\n",j, ListB[i]);
sum_of_primes += ListB[i];
}
}
printf("Problem 1: %d\n", sum(1000));
printf("Problem 2: %d\n", fourmillion());
printf("Problem 4: %d\n");
printf("Problem 5: (did this one on paper) %s)\n", STRINGIZE(232792560));
printf("Problem 6: %d\n", sums_problem());
printf("Problem 7: %d\n", 104743); // Calulated with my function "Process()" above.
printf("Problem 10: %d\n", sum_of_primes);
//printf("\nProblem 3: %d\n", largest(NUM));
delete [] ListA, ListB;
return 0;
}
/* Problem 1 */
int sum(int x)
{
int i, j;
for(i = 0, j = 0; i < x; i++){
if(i%3==0 || i%5==0)
j+=i;
}
return j;
}
int fib(u32 n)
{
if(n <= 1) return n;
else {
return fib(n - 1) + fib(n - 2);
}
}
/* Problem 2 */
long fourmillion(void)
{
int i, sum, f = 0;
for(i = 0, sum = 0; i < 34; i++) {
if( (f = fibo[i]) % 2 == 0 )
sum += f;
}
return sum;
}
void process(int ListA[], int ListB[])
{
bool InitDone = false;
int Test = MAX - 1;
for(int i = 0, j = 0; i < MAX ; ++i){
if(!(ListA[i]%ListB[j]) && !InitDone)
ListA[i] = EMPTY;
if(i == Test && !InitDone){
i = 0; InitDone = true;
continue;
}
if(InitDone && ListA[i] == EMPTY) continue;
if(InitDone && ListA[i] != EMPTY){
j++; ListB[j] = ListA[i];
InitDone = false; i = 0;
continue;
}
if(j == Test) break;
}
}
int sums_problem(void)
{
int soq=0, qos=0;
for(int i = 1; i <= 100; i++) {
qos += i;
soq += pow(i, 2.0);
}
qos = pow(qos, 2.0 );
return qos - soq;
}
Code: Select all
#
# by sparda.
# Public Domain
# Im using python, as some of these problems require that I calculate huge
# integer values; I couldn't be bothered to use GMP, sorry to say.
#! /usr/bin/env python
from math import *
num = 600851475143L
jj = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450
n = [
73167176531330624919225119674426574742355349194934L,
96983520312774506326239578318016984801869478851843L,
85861560789112949495459501737958331952853208805511L,
12540698747158523863050715693290963295227443043557L,
66896648950445244523161731856403098711121722383113L,
62229893423380308135336276614282806444486645238749L,
30358907296290491560440772390713810515859307960866L,
70172427121883998797908792274921901699720888093776L,
65727333001053367881220235421809751254540594752243L,
52584907711670556013604839586446706324415722155397L,
53697817977846174064955149290862569321978468622482L,
83972241375657056057490261407972968652414535100474L,
82166370484403199890008895243450658541227588666881L,
16427171479924442928230863465674813919123162824586L,
17866458359124566529476545682848912883142607690042L,
24219022671055626321111109370544217506941658960408L,
7198403850962455444362981230987879927244284909188L,
84580156166097919133875499200524063689912560717606L,
5886116467109405077541002256983155200055935729725L,
71636269561882670428252483600823257530420752963450L,
]
fifty = [
37107287533902102798797998220837590246510135740250L,
46376937677490009712648124896970078050417018260538L,
74324986199524741059474233309513058123726617309629L,
91942213363574161572522430563301811072406154908250L,
23067588207539346171171980310421047513778063246676L,
89261670696623633820136378418383684178734361726757L,
28112879812849979408065481931592621691275889832738L,
44274228917432520321923589422876796487670272189318L,
47451445736001306439091167216856844588711603153276L,
70386486105843025439939619828917593665686757934951L,
62176457141856560629502157223196586755079324193331L,
64906352462741904929101432445813822663347944758178L,
92575867718337217661963751590579239728245598838407L,
58203565325359399008402633568948830189458628227828L,
80181199384826282014278194139940567587151170094390L,
35398664372827112653829987240784473053190104293586L,
86515506006295864861532075273371959191420517255829L,
71693888707715466499115593487603532921714970056938L,
54370070576826684624621495650076471787294438377604L,
53282654108756828443191190634694037855217779295145L,
36123272525000296071075082563815656710885258350721L,
45876576172410976447339110607218265236877223636045L,
17423706905851860660448207621209813287860733969412L,
81142660418086830619328460811191061556940512689692L,
51934325451728388641918047049293215058642563049483L,
62467221648435076201727918039944693004732956340691L,
15732444386908125794514089057706229429197107928209L,
55037687525678773091862540744969844508330393682126L,
18336384825330154686196124348767681297534375946515L,
80386287592878490201521685554828717201219257766954L,
78182833757993103614740356856449095527097864797581L,
16726320100436897842553539920931837441497806860984L,
48403098129077791799088218795327364475675590848030L,
87086987551392711854517078544161852424320693150332L,
59959406895756536782107074926966537676326235447210L,
69793950679652694742597709739166693763042633987085L,
41052684708299085211399427365734116182760315001271L,
65378607361501080857009149939512557028198746004375L,
35829035317434717326932123578154982629742552737307L,
94953759765105305946966067683156574377167401875275L,
88902802571733229619176668713819931811048770190271L,
25267680276078003013678680992525463401061632866526L,
36270218540497705585629946580636237993140746255962L,
24074486908231174977792365466257246923322810917141L,
91430288197103288597806669760892938638285025333403L,
34413065578016127815921815005561868836468420090470L,
23053081172816430487623791969842487255036638784583L,
11487696932154902810424020138335124462181441773470L,
63783299490636259666498587618221225225512486764533L,
67720186971698544312419572409913959008952310058822L,
95548255300263520781532296796249481641953868218774L,
76085327132285723110424803456124867697064507995236L,
37774242535411291684276865538926205024910326572967L,
23701913275725675285653248258265463092207058596522L,
29798860272258331913126375147341994889534765745501L,
18495701454879288984856827726077713721403798879715L,
38298203783031473527721580348144513491373226651381L,
34829543829199918180278916522431027392251122869539L,
40957953066405232632538044100059654939159879593635L,
29746152185502371307642255121183693803580388584903L,
41698116222072977186158236678424689157993532961922L,
62467957194401269043877107275048102390895523597457L,
23189706772547915061505504953922979530901129967519L,
86188088225875314529584099251203829009407770775672L,
11306739708304724483816533873502340845647058077308L,
82959174767140363198008187129011875491310547126581L,
97623331044818386269515456334926366572897563400500L,
42846280183517070527831839425882145521227251250327L,
55121603546981200581762165212827652751691296897789L,
32238195734329339946437501907836945765883352399886L,
75506164965184775180738168837861091527357929701337L,
62177842752192623401942399639168044983993173312731L,
32924185707147349566916674687634660915035914677504L,
99518671430235219628894890102423325116913619626622L,
73267460800591547471830798392868535206946944540724L,
76841822524674417161514036427982273348055556214818L,
97142617910342598647204516893989422179826088076852L,
87783646182799346313767754307809363333018982642090L,
10848802521674670883215120185883543223812876952786L,
71329612474782464538636993009049310363619763878039L,
62184073572399794223406235393808339651327408011116L,
66627891981488087797941876876144230030984490851411L,
60661826293682836764744779239180335110989069790714L,
85786944089552990653640447425576083659976645795096L,
66024396409905389607120198219976047599490197230297L,
64913982680032973156037120041377903785566085089252L,
16730939319872750275468906903707539413042652315011L,
94809377245048795150954100921645863754710598436791L,
78639167021187492431995700641917969777599028300699L,
15368713711936614952811305876380278410754449733078L,
40789923115535562561142322423255033685442488917353L,
44889911501440648020369068063960672322193204149535L,
41503128880339536053299340368006977710650566631954L,
81234880673210146739058568557934581403627822703280L,
82616570773948327592232845941706525094512325230608L,
22918802058777319719839450180888072429661980811197L,
77158542502016545090413245809786882778948721859617L,
72107838435069186155435662884062257473692284509516L,
20849603980134001723930671666823555245252804609722L,
53503534226472524250874054075591789781264330331690L
]
def factorial(x):
if x <= 0:
return 1
else:
return factorial(x-1)*x
def main():
sums = 0
num = factorial(100)
l = str(num)
for i in l:
sums += int(i)
print sums
sums = 0
for i in fifty:
sums = sums + i
l = str(sums)
print len(l)
print sums
for i in range(11):
print l[i],
# Problem 16
x = pow(2, 1000)
x = int(x)
l = str(x)
sums = 0
for i in l:
sums += int(i)
print
print sums
print
#problem 8
max = 0
k = str(jj)
for i in range(len(k)-4):
if(int(k[i])*int(k[i+1])*int(k[i+2])*int(k[i+3])*int(k[i+4]) > max):
max = int(k[i])*int(k[i+1])*int(k[i+2])*int(k[i+3])*int(k[i+4])
print max
return
main()